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The diffraction limit for lensless imaging,
defined as the sharpest possible point im-
age obtainable with a pinhole aperture, is
analyzed and compared to the corre-
sponding limit for imaging with lenses by
means of theoretical considerations and
numerical computations using the Fresnel-
Lommel diffraction theory for circular
apertures. The numerical result (u = p) ob-
tained for the best configuration parame-
ter u which defines the optical setup is con-
sistent with the quarter-wave criterion,
and is the same as the value reported in a
classical paper by Petzval but smaller
than the value (u = 1.8p) found by Lord
Rayleigh. The smallest discernible detail
(pixel) in a composite image is defined by
an expression found by Rayleigh on ap-

plying the half-wave criterion and is shown
to be consistent with the Sparrow crite-
rion of resolution. The numerical values of
other measures of image size are re-
ported and compared to equivalent parame-
ters of the Fraunhofer-Airy profile that
governs imaging with lenses.
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1. Introduction

Lensless imaging is known as the basis of the camera
obscura, or pinhole imagery. It has modern technical
and scientific applications where the use of lenses is not
possible (e.g., x-ray optics) or must be avoided (e.g.,
illumination of absolute radiometers). The underlying
concept is illustrated in Fig. 1: A small circular aperture
! limits the pencil of rays proceeding from a luminous
point P0 in an object plane30 and, thus, produces an
image in the form of a small patch of light BPCB' on a
screen6 . It is customary to describe this image in terms
of a dimensionless image coordinatev and configuration
parameteru defined as

v =
2pac

lr
, u =

2pa2(r0 + r )
lr0r

, (1)

wherel is the wavelength of light,a is the radius of the
aperture,r0 and r are the object and image distances
shown in the figure,1 O is the aperture center, A is a
point on the aperture rim, andc = CP is the radial dis-
tance from the image center C. As it is the object of this
paper to assess the actual width of the image produced
by an aperture of given radiusa, we will use v/Ïu
instead ofv as the image coordinate because it is propor-
tional to c but independent ofa.

1 A paraxial approximation, cosb = 1, is assumed throughout this pa-
per because this assumption is implicit in Eqs. (4a,b) and (6a). Without
it, r0 andr would be equal to the distancesP0O andOP, respectively,
and inclination factors would appear in most equations.
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Fig. 1. Lensless imaging by a circular aperture! of diameter 2a. 30 = object plane, P0 = object point,
O = aperture center,6 = screen, BPCB' = geometrical image,c = PC= radial distance from image center.

A general idea of the nature of the diffraction limit for
lensless imaging can be obtained from a classical paper
by Petzval [1], who assumed that forr0 >> r every im-
age point P is spread by Fraunhofer diffraction and thus
has a finite width on the order of 2lr /a. The aggregate
image width 2Dc exceeds the geometrical width 2a by
the same amount so thatDc = a + lr /a, or Dv/Ïu as
shown by the upper curve in Fig. 2. This total image
radius has a minimum forÏu = p/Ïu so that

(u)Petzval= p, (Dv/Ïu)Petzval= 2Ïp,

(2a)Petzval= Ï2lr , r0 >> r , (2)

Fig. 2. Petzval’s estimate. The diffraction limit occurs at the intersec-
tion, u = p, of the image widths due to diffraction (left) and geometri-
cal optics (right).

where (2a)Petzvalis the aperture diameter expected to give
the sharpest image. Petzval’s analysis is admirable on
account of its simplicity, although the Fraunhofer ap-
proximation is not applicable for lensless imaging and
the incoherent superposition of elementary diffraction
patterns is inadmissible.

It is easy to show that Petzval’s result foru is consis-
tent with the quarter-wave criterion of resolution. Let A
be a point located on the spherical wavefront0 incident
on the aperture and on a marginal ray passing at the
aperture center, so that

AC2 = P0A2 + P0C2 2 2P0AP0Ccosg , (3a)

as may be seen by applying the cosine theorem to the
triangleP0AC. In the paraxial approximation cosb , 1
one findsP0A = P0O , r0 andAC , r + Dr , whereDr is
the small path differenceAC 2 OC. Therefore,

Dr ≈ r0(r0 + r )(1 2 cosg )
r

≈ a2(r0 + r )
2r0r

=
lu
4p

, (3b)

where it was assumed thatDr 2 << r 2 andg was evalu-
ated as the small anglea/r0. This proves that the quarter-
wave criterion is satisfied whenu = p.

A further refinement of the theoretical treatment re-
quires the Fresnel-Lommel equations [2] which govern
the diffraction effects of lensless imaging,

E(u,v) = Egeom(v)|a (u,v)|2, Egeom(v) =
F0r0

2

pa2(r0 + r )2 ,

(4a)
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|a (u,v)|2 =
u2

4
[L2(u,v) + M2(u,v)], (4b)

whereE(u,v) is the irradiance at the point P of Fig. 1,
Egeom(v) is the geometrical irradiance in the absence of
diffraction, F0 is the radiant flux admitted by the aper-
ture, |a (u,v)|2 is the modification ofEgeom(v) by diffrac-
tion, and L(u,v) and M(u,v) are functions defined by
Lommel as linear combinations of infinite series of Bes-
sel functions.

In the past, computations based on these equations
were tedious but nonetheless Lommel provided numeri-
cal tables ofE(u,v) and Rayleigh [3] used these tables
for a further analysis of pinhole imaging. Rayleigh plot-
ted the diffraction profiles which are reproduced here as
Fig. 3 and, without additional calculations, judged that
“u = 1/2p is too large and u = 3p is too great. The only
question that can arise is between u =p and u = 2p.
The latter has decidedly the higher resolving power, but
the advantage is to some extent paid for in the greater

diffusion of light outside the image proper.” He con-
ducted visual and photographic experiments to settle
this question and found that the sharpest images were
obtained for

uRayleigh= 1.8p, (2a)Rayleigh= Ï3.6lr0r /(r0 + r ). (5)

Rayleigh did not explicitly state the image size corre-
sponding to this value ofu. However, he showed that, for
any aperture diameter 2a and in the limitr0 >> r , the
greatest path difference at the point P in Fig. 1 is 2ac/r ,
so that “the illumination will not be greatly reduced
until the extreme discrepancy of phase reaches half a
wavelength.” This gives 2Dc = lr /2a or Dv = 0.5p,
which turns out to be an excellent estimate of the onset
of resolution in the sense of the Sparrow criterion [4]
because the relative central irradiance2 in the com-
posite pattern of two Lommel profiles separated by
2Dv/Ïu = p/Ïu,

Fig. 3. Normalized Fresnel-Lommel diffraction profiles foru = 0.5 p, p, 2p, and 3p.

2 Equation (6a) is approximate in that it ignores the “shrinkage”
caused by the fact that the maxima of the composite pattern do not
coincide exactly with the maxima of the superimposed profiles.
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Emin

Emax
=

2E(u,Dv/Ïu)

1 + E(u,2Dv/Ïu)
, (6a)

is 0.9974 foru = p, 0.9967 foru = 1.8p, and 1.0086 for
the Airy profile defined by Eq. (7a), below. Accord-
ingly, the smallest discernible detail (pixel) in a com-
posite image is given by

DvSparrow= 0.5p. (6b)

2. Analysis

As the use of Lommel’s equations [Eqs. (4a,b)] for
numerical computations is no longer a problem, it is the
purpose of this paper to re-examine the question of an
optimal aperture diameter for lensless imaging and to
characterize the resulting image distribution of irradi-
ance and radiant flux in quantitative terms. This work
was performed using the algorithms for Fresnel diffrac-
tion published in Ref. [5], which should be consulted for
mathematical and computational details. Readers wish-
ing to perform computations may also consult a recent
paper on a similar topic by Shirley [6].

When a lens is placed at the aperture! in Fig. 1 and
30 and 6 are conjugate object and image planes, the
irradiance distribution in the diffraction pattern will be
given by the Fraunhofer-Airy formula,

E(v) =
F0pa2

l2r 2 F2J1(v)
v G2

, (7a)

where J1 is the first-order Bessel function of the first
kind and the other quantities are the same as above. As

this equation also applies to Fresnel-Lommel diffraction
in the limit u → 0,3 it will be useful to analyze the
profiles in Fig. 3 by criteria which are equivalent to
accepted criteria for assessing lens images. The proper-
ties of the Airy function [Eq. (7a)] that will be used for
this purpose are listed in Table 1, where the values in the
last column represent the fractions of the total fluxF0

contained in a circle of radiusDv,

f (Dv) = 1
2E

Dv

0

dvvF2J1(v)
v G2

= 1 2 J2
0(Dv) 2 J2

1(Dv), (7b)

according to a formula derived by Rayleigh in an article
on the wave theory of light [6]. The best known quantity
shown in Table 1 is the radiusDvAiry of the central
maximum (Airy disk). Because 84 % of the total flux is
concentrated in the central disk, it is often assumed that
the diffraction pattern consists of the Airy disk alone.

Figure 3 shows at a glance that width criteria based
on a single irradiance value would be unreliable mea-
sures of image sharpness as they favor the central por-
tion of the profiles and ignore the formation of a second
maximum which is evident in the figures. For example,
the halfwidth of the profiles decreases monotonically
until, nearu = 3p, the profile turns up before reaching
the half-power point. On the other hand, the area width
defined in the third row of Table 1 is quite suitable as it
measures the feature which is most obvious on visual
inspection of these profiles; namely, the concentration
of E(u,v)/E(u,0) near the ordinate axis. Rayleigh may
have used it intuitively when judging these profiles, and
in this work it was applied mathematically by means of
the quadrature formula

Table 1. Properties of the Airy diffraction profile [Eq. (7a)]

Property Definition Dv E(Dv)/E(0) f (Dv)

Sparrow limit Dv = 0.5 p 0.5 p 0.520 855 0.455 925

Area width Dv = E
`

0

dvF2J1(v)
v G2

16
3p

= 0.540 380p 0.463 082 0.506 873

Rayleigh width Dv = 0.5 DvAiry 0.609 835p 0.367 516 0.588 443

Airy disk, DvAiry E(v) = 0 1.219 670p 0 0.837 785

3 In this limit, Eq. (7a) results because one has |a (u,v)|2 → (uJ1(v)/v)2.
However, it is misleading to refer to the Fraunhofer-Airy formula as
a “pinhole limit”. The aperture diameters used in pinhole photography
are on the order of 0.5 mm to 1 mm and, as shown by Eqs. (2) and
(5), correspond to fairly large values ofu except for infinitely large
image distances.
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Dv

Ïu
=

1

Ïu|a (u,0)|2
E
`

0

dv|a (u,v)|2 ≈ dv

Ïu|a0|2
ON
n=0

|an|2, (8)

which allows computations of area widths by straight-
forward summation of |an|2 = |a (u,vn)|2 for equidistant
argumentsvn = (n + 1/2) dv up to a largest valueN for
which |an|2 is suitably small. The increments and upper
limits used weredv = 0.01u andN = 500, resulting in
numerical values accurate to six digits or better. As
shown in Fig. 4, these computations revealed the exis-
tence of a shallow minimum near

u = 1.7p, Dv/Ïu = 0.910 925, (9)

which differs insignificantly from the value 1.8p found
by Rayleigh, and thus verifies that the latter is consistent
with the area width criterion.

Fig. 4. Area widthDv/Ïu and flux fractionsf (Dv/Ïu) as functions
of u.

However, what really determines the sharpness of the
image is not the concentration of irradiance as plotted in
Fig. 3 but the physical concentration of radiant flux in
the image plane itself. This aspect was mentioned but
not explored by Rayleigh, and will be considered next.
The quantity required for this purpose is the fractional
flux contained in a circle of radiusDc = lr Dv/2pa in
the image plane, as in Eq. (6b), and thus Eqs. (4a,b)
were used to derive the following summation formula
for Lommel profiles,

f (Dv/Ïu) =
2p
F0
E
Dc

0

dc cE(u,v) =
2
u2E

Dv

0

dv v|a (u,v)|2

≈ (dv)2

2u2 ON
n=0

(2n + 1){|an|2 + |an+1|2}, (10)

where the notation is the same as in Eq. (8) butv and
|a (u,v)|2 are replaced by their arithmetic means for each
element of summation. Equation (10) was used to gener-
ate lists, accurate to six digits, off (Dv/Ïu) for consec-
utive upper limitsN # 500 and incrementsdv = 0.01u.
These lists were used as lookup tables, and linear inter-
polation was used to obtain final results for given values
of u andDv/Ïu.

The values off (Dv/Ïu) obtained in this manner for
the area widths computed earlier are plotted as the lower
curve in Fig. 4. While approaching 50 % for small val-
ues ofu, as should be expected from Table 1, these flux
fractions decrease for larger values ofu and, where
Dv/Ïu is a minimum, they are only on the order of
35 %. This was deemed insufficient for judging the pro-
files in their entirety. Therefore, it was decided to apply
Eq. (10) in a different manner so that it would directly
yield the values ofu for which f (Dv/Ïu) is contained in
the smallest possible widthDv/Ïu). The flux fractions
used for these computations were 0.3333, 0.5, 0.6667,
0.75, and 0.8378, the latter being equivalent to the Airy
disk in Table 1. The results obtained are illustrated in
Fig. 5, showing that a shallow but discernible minimum
of Dv/Ïu exists for everyf (Dv/Ïu). The values ofu at
which these minima occur are all different. However, as
shown by Fig. 6, they are neatly clustered around a
median value of

u = p, (11)

which was considered the best overall choice ofu based
on the concentration of radiant flux in the image.

Fig. 5. Flux widths Dv/Ïu for f (Dv/Ïu = 0.3333, 0.6667, and
0.8378.
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Fig. 6. Dependence of bestu on flux fraction f (Dv/Ïu).

As a final test, we calculated the relative central irra-
diance using Eq. (6a) in the composite pattern of two
Lommel profiles separated by given amounts 2Dv/Ïu.
The results obtained are plotted in Fig. 7, showing that
for the usual definition of resolving power in terms of a
relative central irradiance on the order of 0.7 the config-
uration parameteru = 1.8p is superior. On the other
hand, the advantage lies withu = p when larger separa-
tions are considered, as has often been advocated.

Fig. 7. Relative central irradiance,Emin/Emax, in the composite pattern
of two Lommel profiles separated by 2Dv/Ïu for u = p and 1.8p.

3. Conclusions

On account of the complicated nature of the Lommel
profiles it is no surprise that the above analysis gives no
unequivocal answer regarding a best configuration
parameteru for lensless imaging. We have verified
Rayleigh’s value as a minimum of area width, con-
firmed Petzval’s value by computations of flux widths,
and were unable to make a choice using the theory of
resolution. This ambiguity can undoubtedly be at-
tributed to the fact that the various minima of image size

found in this analysis are all shallow so that, on the
whole, the difference betweenu = p and 1.8p is in-
significant for practical purposes. The same can be in-
ferred from the observation made by writers on pinhole
photography that, although the best aperture diameters
are usually stated within 0.01 mm, deviations on the
order of 0.1 mm have little effect on image quality. It
appears that Rayleigh reached a similar conclusion. He
mentioned that Petzval’s value,u = p, was quoted in a
pamphlet on pinhole photography and remarked that the
corresponding “detail in a photograph ... was not
markedly short of that observable by direct vision.” At
the same time, he stated that images obtained for
u = 1.8p “ fully bore out expectations.”

It would of course be possible to compromise and
adopt an intermediate best value ofu. This seemed
inadvisable as it might be misinterpreted as an improve-
ment or refinement of the results obtained by Petzval
and Rayleigh. The above analysis has shown that both
are valid and that there is a fairly wide range ofu’s
which give acceptably sharp images. This is in fact a
practical advantage, as it permits the use of one and the
same aperture for a variety of image distances and/or
wavelengths.

However, from a theoretical point of view it is desir-
able to have a value which is, not only consistent with
experience, but also conforms to accepted criteria used
elsewhere for assessing image quality. On this basis,
u = p is preferable as it is consistent with the quarter-
wave criterion whereasu = 1.8p is not. By the same
token, the Sparrow width in Eq. (6b) is theoretically
superior to the value in Eq. (2) because it conforms to
the half-width criterion. Accordingly, the final result
adopted in this paper for the diffraction limit of lensless
imaging is

u = p, Dv/Ïu $ 0.5Ïp, 2a = Ï2lr0r /(r0 + r ),
(12)

where 0.5Ïp is the pixel size, defined as the smallest
discernible detail in accordance with the Sparrow crite-
rion. Equation (12) should not be construed as a criti-
cism of Rayleigh’s astute assessment of the Lommel
profiles in Fig. 3. It merely ensures that the diffraction
limits for imaging with and without lenses are defined
consistently, but does not affect the practical aspects of
Rayleigh’s work. Yet, from a historical perspective it is
interesting that Rayleigh did not apply his own quarter-
wave criterion to defineu while, at the same time, he
used a half-wave criterion to define the image size.

The optical and radiometric properties of the Lom-
mel profile foru = p are summarized in Table 2. Four of
these parameters were defined to be equivalent to the
values given in Table 1 for Airy profiles. The fifth is the
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geometrical widthDv/Ïu = Ïu that would be obtained
in the absence of diffraction.4 The remaining columns of
Table 2 show the numerical values ofDv/Ïu and the
corresponding relative irradiancesErel = E(u,Dv/Ïu)/
E(u,0), flux fractions f (Dv/Ïu), and relative central
irradianceEmin/Emax in a double image. The equivalent
Airy disk in Table 2 is defined so that the corresponding
flux fraction is the same as for the Airy profile, and the
Rayleigh width is half as large;5 their numerical values
can be closely approximated by 3 and 1.5, respectively.
It should be noted that the geometrical width is twice as
large as the Sparrow width and appears near the bottom
of the table. This shows that, on the whole, the diffrac-
tion-limited image is sharper than the geometrical im-
age.
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4 This quantity is germane to Lommel profiles and is zero in the Airy
limit u → 0.
5 The relative central irradianceEmin/Emax corresponding to this
Rayleigh width is only 0.27. Alternatively the Rayleigh width of the
Lommel profile can be evaluated asDv/Ïu = 1.075 287, which is
smaller than the value in Table 2 but gives the familiar relative central
irradiance 0.735 932 found for Airy profiles.

Table 2. Properties of the Lommel Diffraction Profile [Eqs. (4a,b)] foru = p

Property Definition Dv/Ïu Erel f (Dv/Ïu) Emin/Emax

Sparrow limit Dv = 0.5p 0.886 227 0.525 145 0.380 803 0.997 362
Area width Eq. (7) 1.023 941 0.417 900 0.458 319 0.808 131
Rayleigh width Dv = 0.5 DvAiry 1.498 744 0.136 878 0.647 732 0.265 165
Geometrical width Dv = p 1.772 454 0.060 510 0.698 182 0.123 190
Airy disk, DvAiry f (Dv/Ïu) = 0.837 785 2.997 488 0.032 497 0.837 785 0.064 741
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